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Probing Quantum Structure with Boolean
Localization Systems

Elias Zafiris1

Received February 28, 2000

In an attempt to probe the objects belonging to the quantum species of structure,
we develop the idea of using observables of the Boolean species of structures,
as coordinatizing objects in the quantum world. This results in a contextualistic
perspective on the latter through local Boolean measurement reference frames.
The semantics of this representation is discussed extensively.

1. INTRODUCTION

In a previous work [1, 2] we proposed a mathematical scheme for the
analysis of quantum event structures based on category-theoretic methods
[3–6], and we also attempted an interpretation of the scheme in order to
obtain the physical meaning of this construction in relation to the concept
of events in quantum theory. The main guiding idea in our investigation has
been the use of objects belonging to the Boolean species of event structure
as modeling figures for probing the objects belonging to the quantum species
of event structure. The language of category theory is perfectly suited to
implement this idea in a universal way. The Boolean event algebras shaping
objects give rise to structure-preserving maps with these objects as their
domains, which under appropriate compatibility relations provide an isomor-
phism between quantum algebras of events and Boolean localization systems.
The essence of this scheme is the development of a Boolean manifold perspec-
tive on quantum event structures, according to which a quantum event algebra
consists of an interconnected family of Boolean ones interlocking in a nontriv-
ial way.
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The physical interpretation of the Boolean manifold scheme takes place
through the identification of Boolean charts in systems of localization for
quantum event algebras with reference frames, relative to which the results
of measurements can be coordinatized. Thus any Boolean chart in an atlas
for a quantum algebra of events corresponds to a set of classical Boolean
events which become realizable in its experimental context. The above identi-
fication is equivalent to the introduction of a relativity principle in quantum
theory and suggests a contextualistic interpretation of its formalism. Thus
the quantum world is being perceived through Boolean reference frames
objectified by measuring arrangements set up experimentally. In this work
we attempt to substantiate this interpretational perspective by focusing our
attention to the category of quantum observables.

The notion of observable corresponds to a measurable physical quantity
in the context of an arrangement set up experimentally. In any experiment
performed by an observer the propositions that can be made concerning a
physical quantity are of the type which asserts that the value of the physical
quantity lies in some Borel set of the real numbers. The proposition that the
value of a physical quantity lies in a Borel set of the real line corresponds
to an event as it is apprehended by an observer using his measuring instrument.
Thus we obtain a mapping from the Borel sets of the real line to the event
structure which captures precisely the notion of observable. We may argue
that the real line endowed with its Borel structure serves as a modeling object
which schematizes the event algebra of an observed system by projecting its
structure into it. In the Hilbert space formalism of quantum theory, events
are considered as closed subspaces of a seperable, complex Hilbert space
corresponding to a physical system. Then the quantum event algebra is
identified with the lattice of closed subspaces of the Hilbert space, ordered
by inclusion and carrying an orthocomplementation operation which is given
by the orthogonal complements of the closed subspaces [7]. Subsequently a
quantum event structure is defined to be the category of quantum event
algebras and quantum algebraic homomorphisms. In effect a nonclassical,
non-Boolean logical structure is induced which has its origins in quantm
theory.

In the quantum-logic approach the notion of event is taken to be equiva-
lent to a proposition of a physical system. This formulation of quantum theory
is based on the identification of propositions with projection operators on a
complex Hilbert space [8]. Furthermore, the order relations and the lattice
operations of the lattice of quantum propositions are associated with the
logical implication relation and the logical operations of conjuction, disjunc-
tion, and negation of propositions.

In Section 2 we introduce the concepts of variable sets and fibrations.
In Section 3 we define the categories associated with event and observable
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structures. In Section 4 we develop a Boolean manifold perspective on quan-
tum theory based on the idea that observables provide a coordinatization of
the quantum world. In Section 5 we analyze the semantics of the attempt
to probe the quantum structure through Boolean measurement localization
systems. Finally, we conclude in Section 6. An appendix contains a detailed
proof of the adjunction we have constructed between presheaves of Boolean
observables and quantum observables.

2. VARIABLE SETS AND FIBRATIONS

For a category ! we will be considering the presheaf category
Sets!op

of all contravariant functors from ! to Sets and all natural transforma-
tions between these. A functor P is a structure-preserving morphism of these
categories, that is, it preserves composition and identities. A functor in the
category Sets!op

can be thought of as constructing an image of ! in Sets
contravariantly, or as a contravariant translation of the “language” of ! into
that of Sets. Given another such translation (contravariant functor) Q of !
into Sets we need to compare them. This can be done by giving, for each
object A in !, a transformation tA: P(A) → Q(A) which compares the two
images of the object A. Not any morphism will do, however, as we would
like the construction to be parametric in A rather than ad hoc. Since A is an
object in ! whereas P(A) is in Sets we cannot link them by a morphism.
Rather, the goal is that the transformation should respect the morphisms of
!, or, in other words, the interpretations of v: A → C by P and Q should
be compatible with the transformation under t. Then t is a natural transforma-
tion in the presheaf category Sets!op

.
An object P of Sets!op

may be understood as a right action of ! on a
set which is partioned into sorts parametrized by the objects of ! and such
that whenever v : C → A is an arrow and p is an element of P of sort A,
then pv is specified as an element of P of sort C such that the following
conditions are satisfied:

p1A 5 p, p(vw) 5 ( pv)w, wv : D → C → A

Such an action P is referred as a !-variable set. The fact that any
morphism t: P → Q in the presheaf category Sets!op

is a natural transforma-
tion is expressed by the condition

t( p, v) 5 t( p)(v)

where the first action of v is the one given by P and the second by Q.
We formalize the above observations as follows: If !op is the opposite

category of !, then Sets!op
denotes the functor category of presheaves on
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!, with objects all functors P: !op → Sets and morphisms all natural transfor-
mations between such functors. Each object P in this category is a contravari-
ant set-valued functor on !, called a presheaf on !.

For each object A of !, P(A) is a set, and for each arrow v: C → A,
P(v): P(A) → P(C ) is a set function. If P is a presheaf on ! and p P P(A),
the value P(v)( p) for an arrow v:C → A in ! is called the restriction of p
along f and is denoted by P(v)( p) 5 p/v.

Each object A of ! gives rise to a contravariant Hom-functor y[A] :5
Hom!(—, A). This functor defines a presheaf on !. Its action on an object
C of ! is given by

y[A] :5 Hom!(C, A)

whereas its action on a morphism D →x
C for v: C → A is given by

y[A](x): Hom!(C, A) → Hom!(D, A)

y[A](x)(v) 5 v + x

Furthermore, y can be made into a functor from ! to the contravariant
functors on !

y: ! → Sets!op

such that A ° Hom!(—, A). This consists of an embedding and it is a full
and faithful functor.

There is a set consisting of all the elements of all the sets P(A), and
similarly there is a set consisting of all the functions P(v). We will formalize
these observations about P: !op → Sets by taking the disjoint union of all
the sets of the form P(A) for all objects A of !. The elements of this disjoint
union can be represented as pairs (A, p) for all objects A of ! and elements
p P P(A). We can say that we construct the disjoint union of sets by labeling
the elements. Now we can construct a category whose set of objects is the
disjoint union just mentioned. This structure is called the category of elements
of P, denoted by G(P, !). Its objects are all pairs (A, p), and its morphisms
(Á, ṕ) → (A, p) are those morphisms u: Á → A of ! for which pu 5 ṕ.
Projection on the second coordinate of G(P, !), defines a functor
G(P): G(P, !) → !. G(P, !) together with the projection functor G(P) is
called the split discrete fibration induced by P, and ! is the base category
of the fibration. The word “discrete” refers to the fact that the fibers are
categories in which the only arrows are identity arrows. If A is an object of
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!, the inverse image under G(P) of A is simply the set P(A), although its
elements are written as pairs so as to form a disjoint union:

G(P, A)
(1)Gp↓

A →P
Sets

3. CATEGORIES OF EVENT AND OBSERVABLE STRUCTURES

According to the category-theoretic approach, to each species of mathe-
matical structure there corresponds a category whose objects have that struc-
ture and whose morphisms preserve it. Moreover, to any natural construction
on structures of one species yielding structures of another species, there
corresponds a functor from the category of first species to the category of
the second.

A classical event structure is a category, denoted by @, which is called
the category of Boolean event algebras. Its objects are Boolean algebras of
events and its arrows are Boolean algebraic homomorphisms.

A quantum event structure is a category, denoted by +, which is called
the category of quantum event algebras. Its objects are quantum algebras of
events, that is, partially ordered sets of quantum events endowed with a
maximal element 1 and with an operation of orthocomplementation [—]*:
L → L, which satisfy, for all l P L the following conditions: [a] l # 1, [b]
l** 5 l, [c] l ∨ l* 5 1, [d] l # ĺ ⇒ ĺ* # l*, [e] l ' ĺ ⇒ l ∨ ĺ P L, and [f]
l ∨ ĺ 5 1, l ∧ ĺ 5 0 ⇒ l 5 ĺ*, where 0 :5 1*. l ' ĺ :5 l # ĺ*, and the
operations of meet ∧ and join ∨ are defined as usual.

Its arrows are quantum algebraic homomorphisms, that is, maps
L →H K, which satisfy, for all k P K, the following conditions: [a] H(1) 5
1, [b] H(k*) 5 [H(k)]*, [c] k # ḱ ⇒ H(k) # H(ḱ), and [d] k ' ḱ ⇒ H(k ∨
ḱ) # H(k) ∨ H(ḱ).

Next we introduce the categories associated with structures of
observables.

A quantum observable space structure is a category, denoted by 2B,
which is called the category of spaces of quantum observables.

Its objects are the sets V of real-valued observables on a quantum
event algebra L, where each observable J is defined to be an algebraic
homomorphism from the Borel algebra of the real line Bor(R), to the quantum
event algebra L,

J : Bor(R) → L

such that the following conditions are satisfied: [i] J (0⁄ ) 5 0, J(R) 5 1,
[ii] E ù F 5 0⁄ ⇒ J(E ) ' J(F ) for E, F P Bor(R), [iii] J(øn En) 5
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∨nJ(En), where E1, E2, . . . is a sequence of mutually disjoint Borel sets of
the real line.

If L is isomorphic with the orthocomplemented lattice of orthogonal
projections on a Hilbert space, then it follows from von Neumann’s spectral
theorem that the observables are in 1–1 correspondence with the hypermaxi-
mal Hermitian operators on the Hilbert space.

Moreover, each set V is endowed with a right action R: V 3 Bor f (R)
→ V from the semigroup of all real-valued Borel functions of a real variable
f : R → R which satisfy the following condition:

E P Bor(R) ⇒ f 21(E ) P Bor(R)

According to the above, we have

(J, f ) P V 3 Bor f (R) ° J ● f 5 J( f21(E )) P V

To sum up, the objects of the category of quantum observables are the spaces
V 5 ^V , R& of real-valued observables.

Its arrows are the quantum observable spaces homomorphisms h: V →
U, namely set-homomorphisms [?]h: V → U which respect the right action
of Bor f(R):

[J ● f ]h 5 Jh ● f

We note that V and U are regarded as defined over the same quantum event
algebra L; otherwise we have to take into account the quantum algebraic
homomorphisms as well.

Using the information encoded in the categories of quantum event alge-
bras + and spaces of quantum observables 2B, it is possible to construct a
new category, called the category of quantum observables, which is going
to play a key role in the subsequent analysis, and is defined as follows:

A quantum observable structure is a category, denoted by 2Q , which is
called the category of quantum observables.

Its objects are the quantum observables J: Bor(R) → L and its arrows
J → U are the commutative triangles

Bor(R)
J" 'U (2)H

L ————–→ K

or equivalently the quantum algebraic homomorphisms L →H K in +, such
that U 5 H + J in the above diagram is again a quantum observable.

Correspondingly, a Boolean observable structure is a category, denoted
by 2B , which is called the category of Boolean observables.
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Its objects are the Boolean observables j: Bor(R) → B and its arrows
are the Boolean algebraic homomorphisms B →h

C in @ such that u 5 h +
j in

Bor(R)
j" 'u (3)h

B –———–→ C

is again a Boolean observable.
The categories of event algebras and observables are related functorialy

as follows: Under the action of a shaping functor BorR may be considered
as an object of +. Hence it is possible to construct the covariant representable
functor F: + → Sets defined by F 5 Hom+(BorR, —). The aplication of
the fibration technique on the functor F provides the category of elements
of this functor, which is the category of all arrows in + from the object
BorR, characterized equivalently as the comma category [BorR/+]. We con-
clude that the category of quantum observables 2Q is actually the comma
category [BorR/+] or equivalently the category of elements of the functor
F 5 Hom+(BorR, —). Analogous comments hold for the category of Bool-
ean observables.

4. A BOOLEAN MANIFOLD PERSPECTIVE ON QUANTUM
THEORY

The fact that the categories of quantum and Boolean observables can be
characterized as the comma categories [BorR/+] and [BorR/@], respectively,
permits us to apply the construction of ref. 1 in the context of the above
categories and validate an interpretational perspective on quantum theory
according to which the quantum world is being perceived through Boolean
reference frames, objectified by measuring arrangements set up experimen-
tally, which interlock with each other nontrivially. Thus we procceed as
follows.

4.1. Adjointness

As a first step we define a shaping or modeling or coordinatization
functor A: 2B → 2Q which assigns to Boolean observables in 2B (which
plays the role of the model category) the underlying quantum observables from
2Q and to Boolean homomorphisms the underlying quantum homomorphisms.

Equivalently the shaping functor can be characterized as A: @ → +,
which assigns to Boolean event algebras in @ (which plays the role of the
model category) the underlying quantum event algebras from + and to Bool-
ean homomorphisms the underlying quantum algebraic homomorphisms,
such that
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Bor(R)
j" 'J (4)[CB]J

A(BJ) –———–→ L

commutes.
We consider the category of quantum observables [BorR/+] and the

modeling functor A, and we define the functor R from [BorR/+] to presheaves
given by

R(J): j ° Hom[BorR/+] (A(j), J)

The functor R(J) serves to prove the existence of an adjunction
expressed by the following bijection, natural in P and J (a detailed presenta-
tion of the adjunction we have constructed is provided in the Appendix):

Nat(P, R(J)) > Hom[BorR/+](LP, J)

where the left adjoint L: Sets[[BorR/@]]op → [BorR/+] is defined for each pre-
sheaf of Boolean observables P in Sets[[BorR/@]]op

as the colimit taken in the
category of elements of P,

L(P) 5 Colim{G(P, [BorR/@]) → [BorR/@] → [BorR/+]}

Furthermore, it has been shown in ref. 1 that the categorical construction
of this colimit as a coequalizer of a coproduct reveals the fact that this left
adjoint is like the tensor product 2^[BorR/@] A (Appendix).

Consequently there is a pair of adjoint functors L a R as follows:

L: Sets[[BorR/@]]op
I [BorR/+]: R

4.2. Systems of Boolean Measurement Charts

In order to extract the physical meaning it is necessary to proceed
through the second step of the proposed construction. The second step is the
introduction of the notion of a system of measurement localizations for
observable J over quantum event algebra L in [BorR/+]. This amounts to
the consideration that P is a subfunctor of the Hom-functor R(J) of the form
S : [[BorR/@]]op → Sets, namely for all j in [BorR/@] it satisfies S(j)
# [R(J)](j).

Equivalently it may be described as a set S(B) of maps of the form

cj: A(j) → J, j P [BorR/@]

such that ^cj: A(j) → J in S(j) and A(v): A(j) → A(j́) in [BorR/+] for v:
j → j́ in [BorR/@] implies cj + A(v): A(j́) → [BorR/+] in S(j)&. In turn, a
system of measurement localizations for observable J over quantum event
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algebra L in [BorR/+] is equivalent to a system of measurement localizations
(BJ, [cB]J: A(BJ ) → L) for quantum event algebra L in + making

j́
Bor(R) ——→ A(B́J)

—
—

—→
j↓ [cB́]J↓ (5)

J

[cB]J
A(BJ) ——→ L

commutative.
The introduction of this notion makes the functioning of the adjunction

clear, as we will explain below, and, moreover, can be fruitfully used to
obtain our objective, a Boolean manifold representation of quantum event
algebra L induced by measurement reference frames for observable J over L.

The motivation behind the concept of a system of measurement localiza-
tions has concrete physical grounds. According to the Kochen–Specker theo-
rem [9], it is not possible to understand completely a quantum mechanical
system with the use of a single system of Boolean devices. On the other
hand, in every concrete experimental context, the set of events that have
been actualized in this context forms a Boolean algebra. In the light of this
we can say that any Boolean object (BJ, [cB]J: A(BJ ) → L) in a system of
prelocalizations for quantum event algebra making diagram (5) commutative
corresponds to a set of Boolean classical events that become actualized in
the experimental context of B. These Boolean objects deserve the name
measurement-shaping objects. The above observation is equivalent to the
statement that a measurement Boolean algebra serves as a reference frame
relative to which a measurement result is being coordinatized. Correspond-
ingly, by diagram (5), we obtain naturally the notion of coordinatizing Boolean
observables in a system of prelocalizations for a quantum observable over
quantum event algebra L. We may even advance it to the status of a “principle
of relativity” in quantum physics, suggesting a way of viewing its formalism
in a relativistic and contextualistic perspective. Philosophically speaking, we
can assert that the quantum world is being perceived through Boolean refer-
ence frames, regulated by our measurement procedures, which interlock to
form a coherent picture in a nontrivial way.

In this perspective the role of the Hom-functor R(J) is to single out a
set of algebraic homomorphisms which play the role of local coverings of a
quantum observable by modeling objects. The notion of a system of prelocal-
izations boils down essentially to sending many Boolean observables into
the quantum observable homomorphically, expecting that these modeling
objects will prove to be sufficient for determination of the quantum observ-
able. If we consider the point of view offered by manifold theory, we may
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characterize the maps cj: A(j) → J, j P [BorR/@], in a system of prelocaliza-
tions for quantum observable J as Boolean observable charts. Correspond-
ingly, the shaping Boolean objects (BJ, [cB]J: A(BJ ) → L) in a system of
prelocalizations for quantum event algebra making diagram (5) commutative
may be characterized as measurement charts. In turn, their domains BJ may
be called Boolean coordinate domains for measurement, the elements of BJ

measured Boolean coordinates, and the elements of L as quantum events or
quantum propositions. The Boolean homomorphisms v: BJ → B́J in @ may
be characterized as transition maps.

Moreover, the pullback of the Boolean charts cj: A(j) → J, j P [BorR/
@], and cj́: A(j́)→ J, j́ P [BorR/@], with common codomain the quantum
observable J consists of the object A(j) 3J A(j́) and two arrows cjj́ and
cj́j, called projections, as shown in

T

g

—
—

—
—

—
–→

u
—

—
—

—→

—————————→

h

cj,j́
A(j) 3J A(j́) —→ A(j) (6)

↓cj,j́ ↓cj
cj́

A(j́) J———→

The square commutes and for any object T and arrows h and g that make
the outer square commute there is a unique u: T → A(j) 3J A(j́) that makes
the whole diagram commute. Hence we obtain the condition

cj́ + g 5 cj + h

The pullback of the Boolean charts cj: A(j) → J, j P [BorR/@], and cj́:
A(j́) → J, j̈ P [BorR/@], is equivalently characterized as their fiber product
because A(j) 3J A(j́) is not the whole product A(j) 3 A(j́), but the product
taken fiber by fiber. We notice that if cj and cj́ are 1–1, then their pullback
is isomorphic with the intersection A(j) ù A(j́). Then we can define the
pasting map, which is an isomorphism, as

Vj,j́: cj́j(A(j) 3J A(j́)) → cjj́(A(j) 3J A(j́))

by putting

Vj,j́ 5 cjj́ + c21
j́j
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Then we have the following conditions:

Vj,j 5 1j 1j: identity of j

Vj,j́ + Vj́,j́́ 5 Vj,j́́ if A(j) ù A(j́) ù A(j́́) Þ 0

Vj,j́ 5 Vj́,j if A(j) ù A(j́) Þ 0

The pasting map ensures that cj́j(A(j) 3J A(j́)) and cjj́(A(j) 3J A(j́))
cover the same part of the quantum observable in a compatible way.

It is obvious that the above compatibility conditions are translated imme-
diately into corresponding compatibility conditions concerning Boolean mea-
surement charts on the quantum event structure.

4.3. Boolean Manifolds of Measurement Charts

The representation of a quantum event algebra L as a Boolean manifold
composed of measurement Boolean charts is completed iff the counit of
the adjunction between presheaves of Boolean observables and quantum
observables according to the vertical map in

qv:j́→j A(j́)
z

q(j,p) A(j) → [R(J)](—) ^2B A—–→ (7)h
—–→

eJ

—
—

—
—

→

J

restricted to subfunctors of the Hom-functor R(J) is an isomorphism, namely
structure-preserving, 1–1, and onto. The significance of this representation
lies in the fact that it is possible to dispense with the structure of a quantum
event algebra L completely and use instead one of the Boolean measurement
localization systems for observable J over L characterized equivalently as
measurement Boolean atlases.

If we focus our attention on a Boolean measurement localization system
for quantum observable J over quantum event algebra L, we observe that the
objects of the category of elements G(R(J), j) are actually the aforementioned
local modeling Boolean measurement charts and its maps are the transition
functions.

In other words, the objects of the category of elements G(R(J), j) are
pairs (j, cj: A(j) → J) with j in [BorR/@] and cj an arrow in [BorR/+],
namely a quantum homomorphism. Similarly, the objects of the corresponding
category of elements G(R(L), B) are pairs (BJ, [cB]J: A(BJ ) → L) in a
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system of measurement localizations for observable J over quantum event
algebra L making diagram (5) commutative.

A morphism (B́, cB́) → (B, cB) in the above category of elements (for
notational convenience the index J is not stated explicitly) is an arrow v:
B́ → B in [Bor(R)/@], namely a Boolean homomorphism, with the property
that cB́ 5 cB + A(v): A(B́) → L; in other words, v must take the chosen
measurement Boolean chart cB in G(R(L), B) back into cB́ in G(R(Ĺ), B́).
These morphisms are composed by composing the underlying arrows v of
[Bor R/@].

It is instructive to emphasize that each measurement Boolean chart
may be characterized as a BJ-parametrized family or equivalently as a
varying element, in that if we evaluate it at various stages, we will vary
it through various points of L. Thus the measurement Boolean charts effect
a naming or coordinatization of elements of L by BJ, emphasizing the fact
that each map [cB]J: A(BJ ) → L produces a structure in L. In this perspec-
tive it is clear that when a measurement Boolean chart is considered as a
figure of shape BJ in L, we think of L as a fixed object and of A(BJ ) as
variable so as to give all possible shapes of figures in L. Furthermore, the
compatibility relations that the measurement Boolean charts obey determine
to what extent the corresponding figures overlap and what the structure of
this overlap is.

In addition, if L is conceived of as a truth-value structure, each Boolean
measurement chart can be understood as an unsharp or fuzzy Boolean algebra
of events corresponding to measurement of observable J. More concretely,
since these generalized elements are maps [cB]J: A(BJ ) → L, each Boolean
event in BJ, besides its “yes” or “no” occurrence, will have other indermediate
stages of occurrence, measured by the degrees in the lattice L in +.

The counit of the adjunction being surjective means that the measurement
Boolean charts in G(R(L), BJ ) cover entirely the quantum event algebra L.
The counit being injective means that any two measurement Boolean charts
are always compatible. Moreover, the counit also being an algebraic homo-
morphism means that it preserves the structure, hence in effect the quantum
algebra L is determined completely by the measurement Boolean charts
and their compatibility relations in a system of its localizations. Each chart
corresponds to a set of measured Boolean events locally related to observable
J. The equivalence classes of measurement charts represent the same quantum
events in L. We observe that since two different local Boolean measurement
charts can overlap, we have the possibility of observing quantum events from
different reference frames, but due to the equivalence and compatibility
relations these different observational contexts are equivalent and moreover
establish the same quantum event. In this perspective quantum events may
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be interpreted as fuzzy Boolean events locally, and quantum observables as
fuzzy Boolean observables locally.

5. SEMANTICS OF BOOLEAN MEASUREMENT
LOCALIZATION SYSTEMS

The measurement Boolean reference frame perspective on quantum
structure is based on using observable coordinatizing objects belonging to
the Boolean species of structure as shaping figures to probe objects belonging
to the quantum species of structure. The modeling objects give rise to struc-
ture-preserving maps with the modeling objects as their domains, which fit
compatibly together in a system of localizations, effecting an isomorphism
between quantum event algebra objects and Boolean measurement localiza-
tion systems. Consequently the structure of the quantum event algebra is
recovered by the information that its structure-preserving maps, encoded as
Boolean measurement charts in localization systems, carry, as well as their
compatibility relations. This leads naturally to a relativistic, contextualistic
conception of quantum events with respect to Boolean reference frames of
measurement, and finally to a representation of them as equivalence classes
of measured Boolean fuzzy events. Equivalently, quantum observables are
understood through isomorphism classes of their Boolean localizations on
measurement charts.

The roots of the above contextualistic perspective on quantum structure
established by systems of Boolean measurement localization systems are
located in the physical meaning of the adjunction between presheaves of
Boolean observables and quantum observables under the condition that the
variation in the environment of the category of presheaves is arrested on the
Hom-functor R(L).

The transition from classical to quantum physics essentially involves
the transition from Boolean event structures to non-Boolean event structures,
or from those that do to those that do not admit two-valued homomorphisms.
An observable schematizes the quantum event structure by correlating its
Boolean figures picked by measurements with the smallest Boolean algebra
containing all the clopen sets of the real line. Thus Boolean observables play
the role of coordinatizing objects in the attempt to probe the quantum world
by picking Boolean figures and subsequently opening Boolean windows for
the perception of the latter, interpreted as measurement charts. Let Sets@op

be the world of Boolean observable event structures modeled in Sets by an
observer, or the world of Boolean windows, and + that of quantum event
structures. In this perspective the functor L: Sets@op → + can be conceived
of as a translational code from Boolean windows to the quantum species of
event structure, whereas the functor R: + → Sets@op

can be thought of as a
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translational code in the inverse direction. It is impossible to expect that
translating from one language to another and back will leave the meaning
unchanged. However, there remain two ways for a Boolean-event algebra
variable set P, or Boolean window, to communicate a message to a quantum
event algebra L. Either the information is given in quantum terms with P
translating, which we can represent as LP → L, or the information is given
in Boolean terms with L translating, represented as P → R(L). In the first
case L may think that it receives information in quantum terms, while in the
second, P may think it sends information in Boolean terms. The natural
bijection then corresponds to the assertion that these two distinct ways of
communicating are equivalent. In this perspective the left adjunction operator
can be characterized as the quantization functor and the right adjunction
operator as the classicalization functor.

We have argued that we can probe the quantum world through Boolean
windows, interpreted as measurement charts. Furthermore, we may apply
Stone’s representation theorem for Boolean algebras, according to which it
is legitimate to replace Boolean algebras by fields of subsets of a sample
space. Hence if we replace each Boolean algebra BJ making diagram (5)
commutative by its set-theoretic representation [(, B(] consisting of a local
sample space ( and its local field of subsets B(, it is possible to define local
measurement space charts (B(, cB(: A(B() → L) and corresponding localiza-
tion systems for quantum observable J in [BorR/+]. We note that the inverse
of j 5 JB plays the role of a classical random variable on (. Thus every
quantum observable may be treated locally as a classical random variable.

The equivalence relation for measurement Boolean charts for observable
J over quantum event algebra L establishes a criterion for the equivalence
of experimental contexts, or measurement procedures. Thus, using Boolean
measurement charts (B, cB: A(B) → L) such that diagram (5) commutes and
modeling Boolean coordinates b P B, we can form their equivalence classes,
which, modulo the compatibility conditions on overlaps, will represent a single
quantum event in L. The fact that two different measurement Boolean charts
(B, cB: A(B) → L) and (C, cC: A(C ) → L) in a system of localizations can
overlap reflects the possibility of using two distinct experimental contexts,
or equivalently setting up two different measurement procedures, and hence
obtaining two different outcomes registered by the Boolean coordinates b P
B and c P C. At this point, the equivalence relation between measurement
Boolean charts informs us that that these experimental contexts are in fact
equivalent, and furthermore that, since in a system of localizations compatibility
relations on overlaps are satisfiable, the same quantum event is being verified.
Equivalently, we can say that we identify those experimental outcomes whose
underlying local Boolean observables are related by the established equivalence
relation of the tensor product construction, and diagram (5) commutes as well.
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Correspondingly, from local measurement sample space charts
(B(, cB(: A(B() → L) for observable J over quantum event algebra L we
may form their equivalence classes, which, modulo the conditions for
compatibility on overlaps, will represent a single quantum event in L,
corresponding to the quantum observable J. Under these circumstances
we may interpret the equivalence classes of measurement local space charts
cB( ^ a, a P A(B(), such that the commutativity of diagram (5) is satis-
fied, as the statistical experimental actualizations of the quantum events
in +, corresponding to observables over +. The local measurement space
charts (B(, cB(: A(B() → L) and (C(, cC(: A(C() → L) are compatible in
a system of measurement localizations for observable J over quantum
event algebra L iff for some (D(, cD(: A(D() → L) in the system of local-
izations and a P A(B(), b P A(C(), c, d P A(D(), the following condi-
tions hold:

cB( ^ a 5 cD( ^ c

cC( ^ b 5 cD( ^ d

Finally, the pullback compatibility condition may be interpreted in the
measurement context as denoting that two local space representations of
quantum events corresponding to quantum observables satisfy the compatibil-
ity condition on overlaps iff the measurements of observables are equivalent
to measurements taken in a common experimental setup.

6. CONCLUSIONS

In an attempt to probe the objects belonging to the quantum species of
structure, we have developed the idea of using observables of the Boolean
species of structure as coordinatizing objects in the quantum world, which
results in a contextualistic perspective on the latter through local Boolean
measurement reference frames. An observable effects a schematization of
the quantum event structure by correlating Boolean algebras picked by mea-
surements with the Borel algebra of the real line. Thus Boolean observables
play the role of coordinatizing objects in the quantum world by picking
Boolean figures and subsequently opening Boolean windows for the percep-
tion of the latter, interpreted as local measurement charts. The coordinatizing
objects give rise to structure-preserving maps with the modeling objects
as their domains, which give rise to systems of compatible measurement
localizations, effecting finally an isomorphism between quantum event alge-
bra objects and Boolean measurement localization systems. Consequently,
the structure of a quantum event algebra is completely recovered by the
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information that its structure-preserving maps, encoded as Boolean measure-
ment charts in localization systems, carry, as well as their compatibility
relations. This leads naturally to a relativistic, contextualistic conception of
quantum events with respect to Boolean reference frames of measurement,
and finally to a representation of them as equivalence classes of measured
Boolean fuzzy events. Equivalently, quantum observables are understood
through isomorphism classes of their Boolean localizations on measure-
ment charts.

APPENDIX

We consider the category of quantum observables [BorR/+] and the
modeling functor A, and we define the functor R from [BorR/+] to presheaves
given by

R(J): j ° Hom[BorR/+](A(j), J)

A natural transformation t between the presheaves on the category of
Boolean observables P and R(J), t: P → R(J), is a family tj indexed by
Boolean observables j of [BorR/@] for which each tj is a map

tj: P(j) → Hom[BorR/+](A(j), J)

of sets, such that the diagram of sets

tj
P(j) → Hom[BorR/+](A(j, J)

P(u)↓ ↓*A(u) (8)tj
P(j́) → Hom[BorR/+](A(j́), J)

commutes for each Boolean homomorphism u: j́ → j of [BorR/@].
If we use the category of elements of the Boolean observables-variable

set P, then the map tj defined above can be characterized as

tj: (j, p) → Hom[BorR/+](A + GP(j, p), J)

Equivalently, such a t can be seen as a family of arrows of [BorR/+] which
is indexed by objects (j, p) of the category of elements of the presheaf of
Boolean observables P, namely

{tj( p): A(j) → J}(j,p)

From the perspective of the category of elements of P, the condition of the
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commutativity of diagram (8) is equivalent to the condition that for each
arrow u,

——–A(j) A + GP(j, p)——–




↓





↓

tj(p)↑




A(u) u
*

J (9)

t́j(p)

↑

——–A(j́) A + GP(j́, ṕ)——–

commutes.
From diagram (9) we can see that the arrows tj( p) form a cocone from

the functor A + GP to the quantum observable algebra object J. Making use
of the definition of the colimit, we conclude that each such cocone emerges
by the composition of the colimiting cocone with a unique arrow from the
colimit LX to the quantum observable object J. In other words, there is a
bijection which is natural in X and J

Nat(P, R(J)) > Hom[BorR/+](LX, J)

From the above bijection we are driven to the conclusion that the functor
R from [BorR/+] to presheaves given by

R(J): j ° Hom[BorR/+] (A(j), J)

has a left adjoint L: Sets[BorR/@]op → [BorR/+], which is defined for each
presheaf of Boolean observables X in Sets[BorR/@]op

as the colimit

L(P) 5 Colim{G(P, [BorR/@]) →
GP

[BorR/@] →A [BorR/+]}

Consequently, there is a pair of adjoint functors L ¢ R as follows:

L: Sets[BorR/@]op
I [BorR/+]: R

Thus we have constructed an adjunction which consists of the functors
L and R, called left and right adjoints with respect to each other, respectively,
as well as the natural bijection

Nat(P, R(J)) > Hom[BorR/+](LX, J)

Furthermore, the content of the adjunction can be analyzed if we use
the categorical construction of the colimit defined above, as a coequalizer
of a coproduct [1]. The coequalizer presentation of the colimit shows that
the “Hom-functor” RA has a left adjoint which can be characterized categori-
cally as the tensor product 2^2@ A:
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z (10)
—–→qv:j́→jA(j́) q(j,p)A(j) →x X ^2b Ah
—–→

In diagram (10) the second coproduct is over all the objects (j, p) with
p P X(j) of the category of elements, while the first coproduct is over all
the maps v: (j́, ṕ) → (j, p) of that category, so that v: j́ → j and the condition
pv 5 ṕ is satisfied.
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